Amazon cover image
Image from Amazon.com

TinyML : machine learning with TensorFlow Lite on Arduino and ultra-low-power microcontrollers

By: Contributor(s): Material type: TextTextPublication details: New Delhi : Shroff Publishers, ©2021Description: xvi, 484 p. : ill. ; 24 cmISBN:
  • 9789352139606
Subject(s): DDC classification:
  • 006.31 23 WAR-T
LOC classification:
  • Q325.5 .W37 2020
Contents:
Introduction -- Getting started -- Getting up to speed on machine learning -- The "Hello world" of TinyML : building and training a model -- The "Hello world" of TinyML : building an application -- The "Hello world" of TinyML : deploying to microcontrollers -- Wake-word detection : building an application -- Wake-word detection : training a model -- Person detection : building an application -- Person detection : training a model -- Magic wand : building an application -- Magic wand : training a model -- TensorFlow lite for microcontrollers -- Designing your own TinyML applications -- Optimizing latency -- Optimizing energy usage -- Optimizing model and binary size -- Debugging -- Porting models from TensorFlow to TensorFlow Lite -- Privacy, security, and deployment -- Learning more.
Summary: Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size-- small enough to run on a microcontroller. With this practical book you'll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Books Books IIITD General Stacks Computer Science and Engineering 006.31 WAR-T (Browse shelf(Opens below)) Available 012189
Total holds: 0

Includes index.

Introduction -- Getting started -- Getting up to speed on machine learning -- The "Hello world" of TinyML : building and training a model -- The "Hello world" of TinyML : building an application -- The "Hello world" of TinyML : deploying to microcontrollers -- Wake-word detection : building an application -- Wake-word detection : training a model -- Person detection : building an application -- Person detection : training a model -- Magic wand : building an application -- Magic wand : training a model -- TensorFlow lite for microcontrollers -- Designing your own TinyML applications -- Optimizing latency -- Optimizing energy usage -- Optimizing model and binary size -- Debugging -- Porting models from TensorFlow to TensorFlow Lite -- Privacy, security, and deployment -- Learning more.

Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size-- small enough to run on a microcontroller. With this practical book you'll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary.

There are no comments on this title.

to post a comment.
© 2024 IIIT-Delhi, library@iiitd.ac.in