000 03184nam a22006015i 4500
001 978-981-19-4270-9
003 DE-He213
005 20240423125232.0
007 cr nn 008mamaa
008 221119s2022 si | s |||| 0|eng d
020 _a9789811942709
_9978-981-19-4270-9
024 7 _a10.1007/978-981-19-4270-9
_2doi
050 4 _aQA267-268.5
072 7 _aUYA
_2bicssc
072 7 _aCOM014000
_2bisacsh
072 7 _aUYA
_2thema
082 0 4 _a005.131
_223
100 1 _aLi, Wei.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aR-Calculus, III: Post Three-Valued Logic
_h[electronic resource] /
_cby Wei Li, Yuefei Sui.
250 _a1st ed. 2022.
264 1 _aSingapore :
_bSpringer Nature Singapore :
_bImprint: Springer,
_c2022.
300 _aXII, 273 p. 3 illus., 1 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aPerspectives in Formal Induction, Revision and Evolution,
_x2731-3697
505 0 _aIntroduction -- Many-Placed Sequents -- Modalized Three-Valued Logics -- Post three-valued logic -- R-Calculi for Post Three-valued logic -- Post Three-valued description logic -- R-calculi for Post three-valued description logic -- R-calculi for corner multisequents -- General multisequents -- R-calculi for general multisequents.
520 _aThis third volume of the book series shows R-calculus is a Gentzen-typed deduction system which is non-monotonic, and is a concrete belief revision operator which is proved to satisfy the AGM postulates and the DP postulates. In this book, R-calculus is taken as Tableau-based/sequent-based/multisequent-based to preserve the satisfiability of the Theory/sequent/multisequent to revise, or sequent-based, to preserve the satisfiability of the sequent to revise. The R-calculi for Post and three-valued logic is given. This book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners in the field of logic. .
650 0 _aMachine theory.
650 0 _aMathematical logic.
650 0 _aLogic programming.
650 0 _aMathematical models.
650 0 _aComputer science
_xMathematics.
650 1 4 _aFormal Languages and Automata Theory.
650 2 4 _aMathematical Logic and Foundations.
650 2 4 _aLogic in AI.
650 2 4 _aMathematical Modeling and Industrial Mathematics.
650 2 4 _aMathematics of Computing.
700 1 _aSui, Yuefei.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9789811942693
776 0 8 _iPrinted edition:
_z9789811942716
776 0 8 _iPrinted edition:
_z9789811942723
830 0 _aPerspectives in Formal Induction, Revision and Evolution,
_x2731-3697
856 4 0 _uhttps://doi.org/10.1007/978-981-19-4270-9
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
942 _cSPRINGER
999 _c175735
_d175735