000 03627nam a22005775i 4500
001 978-981-15-2953-5
003 DE-He213
005 20240423125304.0
007 cr nn 008mamaa
008 200227s2020 si | s |||| 0|eng d
020 _a9789811529535
_9978-981-15-2953-5
024 7 _a10.1007/978-981-15-2953-5
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
100 1 _aMahapatra, Abhijit.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aMulti-body Dynamic Modeling of Multi-legged Robots
_h[electronic resource] /
_cby Abhijit Mahapatra, Shibendu Shekhar Roy, Dilip Kumar Pratihar.
250 _a1st ed. 2020.
264 1 _aSingapore :
_bSpringer Nature Singapore :
_bImprint: Springer,
_c2020.
300 _aXXXI, 203 p. 81 illus., 72 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aCognitive Intelligence and Robotics,
_x2520-1964
505 0 _aIntroduction -- Introduction to multi-legged robots -- Multi-legged robots- a Review -- Gait Planning of multi-legged robots -- Kinematic Modeling and Analysis of Six-Legged Robots -- Kinematic Modeling and Analysis of Six-Legged Robots -- Locomotion planning on various terrains -- Multi-body Inverse Dynamic Modeling and Analysis of Six-Legged Robots -- Analytical Framework -- Static Equilibrium Moment Equation -- Study of performance indices- power consumption and stability measure -- Validation using Virtual Prototyping tools and Experiments -- Modeling using Virtual prototyping tools.
520 _aThis book describes the development of an integrated approach for generating the path and gait of realistic hexapod robotic systems. It discusses in detail locomation with straight-ahead, crab and turning motion capabilities in varying terrains, like sloping surfaces, staircases, and various user-defined rough terrains. It also presents computer simulations and validation using Virtual Prototyping (VP) tools and real-world experiments. The book also explores improving solutions by applying the developed nonlinear, constrained inverse dynamics model of the system formulated as a coupled dynamical problem based on the Newton–Euler (NE) approach and taking into account realistic environmental conditions. The approach is developed on the basis of rigid multi-body modelling and the concept that there is no change in the configuration of the system in the short time span of collisions.
650 0 _aArtificial intelligence.
650 0 _aControl engineering.
650 0 _aRobotics.
650 0 _aAutomation.
650 1 4 _aArtificial Intelligence.
650 2 4 _aControl, Robotics, Automation.
700 1 _aRoy, Shibendu Shekhar.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aPratihar, Dilip Kumar.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9789811529528
776 0 8 _iPrinted edition:
_z9789811529542
776 0 8 _iPrinted edition:
_z9789811529559
830 0 _aCognitive Intelligence and Robotics,
_x2520-1964
856 4 0 _uhttps://doi.org/10.1007/978-981-15-2953-5
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
942 _cSPRINGER
999 _c176311
_d176311