000 04370nam a22006375i 4500
001 978-3-030-74524-0
003 DE-He213
005 20240423125513.0
007 cr nn 008mamaa
008 210713s2021 sz | s |||| 0|eng d
020 _a9783030745240
_9978-3-030-74524-0
024 7 _a10.1007/978-3-030-74524-0
_2doi
050 4 _aQA76.9.A25
072 7 _aUR
_2bicssc
072 7 _aUTN
_2bicssc
072 7 _aCOM053000
_2bisacsh
072 7 _aUR
_2thema
072 7 _aUTN
_2thema
082 0 4 _a005.8
_223
100 1 _aVollala, Satyanarayana.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aEnergy-Efficient Modular Exponential Techniques for Public-Key Cryptography
_h[electronic resource] :
_bEfficient Modular Exponential Techniques /
_cby Satyanarayana Vollala, N. Ramasubramanian, Utkarsh Tiwari.
250 _a1st ed. 2021.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2021.
300 _aXX, 257 p. 133 illus., 21 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aChapter 1. Introduction -- Chapter 2. Public-Key Cryptographic Algorithms and Techniques -- Chapter 3. Modular Exponentiations and Modular Multiplication -- Chapter 4. Improving the Performance of Public-Key Techniques -- Chapter 5. Hardware Implementation of Bit Forwarding Techniques -- Chapter 6. Improved Hardware Realization for Public-key Transformations -- Chapter 7. Conclusion. .
520 _aThis unique and focused research monograph addresses the question: How can the performance of modular exponentiation, which is the crucial operation of many public-key cryptographic techniques, be improved? Cryptographic applications--such as RSA algorithms, ElGamal cryptography, elliptic-curve cryptography, Rabin cryptosystems, Diffie -Hellmann key-exchange algorithms, and the Digital Signature Standard--use modular exponentiation extensively. The performance of all these applications strongly depends on the efficient implementation of modular exponentiation and modular multiplication. Since 1984, when Montgomery first introduced a method to evaluate modular multiplications, many algorithmic modifications have been done for improving the efficiency of modular multiplication, but very less work has been done on the modular exponentiation to improve the efficiency. The book focuses on energy-efficient modular exponentiation for cryptographic hardware. Spread across five chapters, this well-researched text focuses in detail on bit forwarding techniques and the corresponding hardware realizations. Readers will also discover advanced performance-improvement techniques based on high radix multiplication and cryptographic hardware based on multi-core architectures. Satyanarayana Vollala is a full-time Ph.D. research scholar in the Department of Computer Science and Engineering at National Institute of Technology, Tiruchirappalli, Tamil Nadu, India. N. Ramasubramanian is an associate professor in the Department of Computer Science and Engineering at National Institute of Technology, Tiruchirappalli, India.
650 0 _aData protection.
650 0 _aCryptography.
650 0 _aData encryption (Computer science).
650 0 _aComputers.
650 0 _aData structures (Computer science).
650 0 _aInformation theory.
650 0 _aComputer programming.
650 1 4 _aData and Information Security.
650 2 4 _aCryptology.
650 2 4 _aComputer Hardware.
650 2 4 _aData Structures and Information Theory.
650 2 4 _aProgramming Techniques.
700 1 _aRamasubramanian, N.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aTiwari, Utkarsh.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030745233
776 0 8 _iPrinted edition:
_z9783030745257
776 0 8 _iPrinted edition:
_z9783030745264
856 4 0 _uhttps://doi.org/10.1007/978-3-030-74524-0
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
942 _cSPRINGER
999 _c178653
_d178653