000 03755nam a22006135i 4500
001 978-3-031-33617-1
003 DE-He213
005 20240423125527.0
007 cr nn 008mamaa
008 230705s2023 sz | s |||| 0|eng d
020 _a9783031336171
_9978-3-031-33617-1
024 7 _a10.1007/978-3-031-33617-1
_2doi
050 4 _aQA76.9.Q36
072 7 _aUN
_2bicssc
072 7 _aCOM021000
_2bisacsh
072 7 _aUN
_2thema
082 0 4 _a001.422
_223
082 0 4 _a005.7
_223
100 1 _aMatwin, Stan.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aGenerative Methods for Social Media Analysis
_h[electronic resource] /
_cby Stan Matwin, Aristides Milios, Paweł Prałat, Amilcar Soares, François Théberge.
250 _a1st ed. 2023.
264 1 _aCham :
_bSpringer Nature Switzerland :
_bImprint: Springer,
_c2023.
300 _aVII, 90 p. 5 illus., 4 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Computer Science,
_x2191-5776
505 0 _a1. Introduction -- 2. Ontologies and Data Models for Cross-platform Social Media Data -- 3. Methods for Text Generation in NLP -- 4. Topic and Sentiment Modelling for Social Media -- 5. Mining and Modelling Complex Networks -- 6. Conclusions.
520 _aThis book provides a broad overview of the state of the art of the research in generative methods for the analysis of social media data. It especially includes two important aspects that currently gain importance in mining and modelling social media: dynamics and networks. The book is divided into five chapters and provides an extensive bibliography consisting of more than 250 papers. After a quick introduction and survey of the book in the first chapter, chapter 2 is devoted to the discussion of data models and ontologies for social network analysis. Next, chapter 3 deals with text generation and generative text models and the dangers they pose to social media and society at large. Chapter 4 then focuses on topic modelling and sentiment analysis in the context of social networks. Finally, Chapter 5 presents graph theory tools and approaches to mine and model social networks. Throughout the book, open problems, highlighting potential future directions, are clearly identified. The book aims at researchers and graduate students in social media analysis, information retrieval, and machine learning applications.
650 0 _aQuantitative research.
650 0 _aArtificial intelligence.
650 0 _aNatural language processing (Computer science).
650 0 _aSocial media.
650 1 4 _aData Analysis and Big Data.
650 2 4 _aArtificial Intelligence.
650 2 4 _aNatural Language Processing (NLP).
650 2 4 _aSocial Media.
700 1 _aMilios, Aristides.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aPrałat, Paweł.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aSoares, Amilcar.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aThéberge, François.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031336164
776 0 8 _iPrinted edition:
_z9783031336188
830 0 _aSpringerBriefs in Computer Science,
_x2191-5776
856 4 0 _uhttps://doi.org/10.1007/978-3-031-33617-1
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
942 _cSPRINGER
999 _c178912
_d178912