000 03953nam a22006135i 4500
001 978-981-99-3885-8
003 DE-He213
005 20240423125534.0
007 cr nn 008mamaa
008 230829s2023 si | s |||| 0|eng d
020 _a9789819938858
_9978-981-99-3885-8
024 7 _a10.1007/978-981-99-3885-8
_2doi
050 4 _aQA76.9.U83
050 4 _aQA76.9.H85
072 7 _aUYZ
_2bicssc
072 7 _aCOM079010
_2bisacsh
072 7 _aUYZ
_2thema
082 0 4 _a005.437
_223
082 0 4 _a004.019
_223
100 1 _aXu, Hua.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aIntent Recognition for Human-Machine Interactions
_h[electronic resource] /
_cby Hua Xu, Hanlei Zhang, Ting-En Lin.
250 _a1st ed. 2023.
264 1 _aSingapore :
_bSpringer Nature Singapore :
_bImprint: Springer,
_c2023.
300 _aXVIII, 152 p. 1 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Computer Science,
_x2191-5776
505 0 _aPart I: Overview -- Chapter 1. Dialogue System -- Chapter 2. Intent Recognition -- Part II: Intent Classification -- Chapter 3. Intent Classification Based on Single Model -- Chapter 4. A Dual RNN Semantic Analysis Framework for Intent Classification and Slot -- Part III: Unknown Intent Detection -- Chapter 5. Unknown Intent Detection Method Based on Model Post-processing -- Chapter 6. Unknown Intent Detection Based on Large-Margin Cosine Loss -- Chapter 7. Unknown Intention Detection Method based on Dynamic Constraint Boundary -- Part IV: Discovery of Unknown Intents -- Chapter 8. Discovering New Intents via Constrained Deep Adaptive Clustering with Cluster Refinement -- Chapter 9. Discovering New Intents with Deep Aligned Clustering -- Part V: Dialogue Intent Recognition Platform -- Chapter 10. Experiment Platform for Dialogue Intent Recognition based on Deep Learning -- Part VI: Summary and Future Work -- Chapter 11. Summary -- Appendix.
520 _aNatural interaction is one of the hottest research issues in human-computer interaction. At present, there is an urgent need for intelligent devices (service robots, virtual humans, etc.) to be able to understand intentions in an interactive dialogue. Focusing on human-computer understanding based on deep learning methods, the book systematically introduces readers to intention recognition, unknown intention detection, and new intention discovery in human-computer dialogue. This book is the first to present interactive dialogue intention analysis in the context of natural interaction. In addition to helping readers master the key technologies and concepts of human-machine dialogue intention analysis and catch up on the latest advances, it includes valuable references for further research.
650 0 _aUser interfaces (Computer systems).
650 0 _aHuman-computer interaction.
650 0 _aData mining.
650 0 _aArtificial intelligence.
650 0 _aRobotics.
650 1 4 _aUser Interfaces and Human Computer Interaction.
650 2 4 _aData Mining and Knowledge Discovery.
650 2 4 _aArtificial Intelligence.
650 2 4 _aRobotics.
700 1 _aZhang, Hanlei.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aLin, Ting-En.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9789819938841
776 0 8 _iPrinted edition:
_z9789819938865
830 0 _aSpringerBriefs in Computer Science,
_x2191-5776
856 4 0 _uhttps://doi.org/10.1007/978-981-99-3885-8
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
942 _cSPRINGER
999 _c179042
_d179042