000 | 04112nam a22006255i 4500 | ||
---|---|---|---|
001 | 978-3-540-39624-6 | ||
003 | DE-He213 | ||
005 | 20240423132438.0 | ||
007 | cr nn 008mamaa | ||
008 | 121227s2003 gw | s |||| 0|eng d | ||
020 |
_a9783540396246 _9978-3-540-39624-6 |
||
024 | 7 |
_a10.1007/b14273 _2doi |
|
050 | 4 | _aQ334-342 | |
050 | 4 | _aTA347.A78 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
245 | 1 | 0 |
_aAlgorithmic Learning Theory _h[electronic resource] : _b14th International Conference, ALT 2003, Sapporo, Japan, October 17-19, 2003, Proceedings / _cedited by Ricard Gavaldà, Klaus P. Jantke, Eiji Takimoto. |
250 | _a1st ed. 2003. | ||
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2003. |
|
300 |
_aXII, 320 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v2842 |
|
505 | 0 | _aInvited Papers -- Abduction and the Dualization Problem -- Signal Extraction and Knowledge Discovery Based on Statistical Modeling -- Association Computation for Information Access -- Efficient Data Representations That Preserve Information -- Can Learning in the Limit Be Done Efficiently? -- Inductive Inference -- Intrinsic Complexity of Uniform Learning -- On Ordinal VC-Dimension and Some Notions of Complexity -- Learning of Erasing Primitive Formal Systems from Positive Examples -- Changing the Inference Type – Keeping the Hypothesis Space -- Learning and Information Extraction -- Robust Inference of Relevant Attributes -- Efficient Learning of Ordered and Unordered Tree Patterns with Contractible Variables -- Learning with Queries -- On the Learnability of Erasing Pattern Languages in the Query Model -- Learning of Finite Unions of Tree Patterns with Repeated Internal Structured Variables from Queries -- Learning with Non-linear Optimization -- Kernel Trick Embedded Gaussian Mixture Model -- Efficiently Learning the Metric with Side-Information -- Learning Continuous Latent Variable Models with Bregman Divergences -- A Stochastic Gradient Descent Algorithm for Structural Risk Minimisation -- Learning from Random Examples -- On the Complexity of Training a Single Perceptron with Programmable Synaptic Delays -- Learning a Subclass of Regular Patterns in Polynomial Time -- Identification with Probability One of Stochastic Deterministic Linear Languages -- Online Prediction -- Criterion of Calibration for Transductive Confidence Machine with Limited Feedback -- Well-Calibrated Predictions from Online Compression Models -- Transductive Confidence Machine Is Universal -- On the Existence and Convergence of Computable Universal Priors. | |
650 | 0 | _aArtificial intelligence. | |
650 | 0 | _aComputer science. | |
650 | 0 | _aAlgorithms. | |
650 | 0 | _aMachine theory. | |
650 | 0 | _aNatural language processing (Computer science). | |
650 | 1 | 4 | _aArtificial Intelligence. |
650 | 2 | 4 | _aTheory of Computation. |
650 | 2 | 4 | _aAlgorithms. |
650 | 2 | 4 | _aFormal Languages and Automata Theory. |
650 | 2 | 4 | _aNatural Language Processing (NLP). |
700 | 1 |
_aGavaldà, Ricard. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
700 | 1 |
_aJantke, Klaus P. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
700 | 1 |
_aTakimoto, Eiji. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783540202912 |
776 | 0 | 8 |
_iPrinted edition: _z9783662163023 |
830 | 0 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v2842 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/b14273 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-LNC | ||
912 | _aZDB-2-BAE | ||
942 | _cSPRINGER | ||
999 |
_c187824 _d187824 |